

Water Supply Master Plan 2050

Board of Directors Meeting, June 10, 2025

Water Supply Needs and Challenges

Multi-year droughts

Climate change impact

Aging infrastructure

Affordability

- Guiding document for long-term water supply investments
- Address existing and emerging challenges and identify strategies to maintain the reliable water supply system
- Adapt to changing conditions

Planning Goals to Achieve Level of Service

Meet 100% of annual water demand during non-drought years and at least 80% of demand in drought years – **Board Policy E.2-2.1**

System reliability

Planning for Multiple Future Conditions

5

A
Stable Demand

Moderately Impacted Imports

С

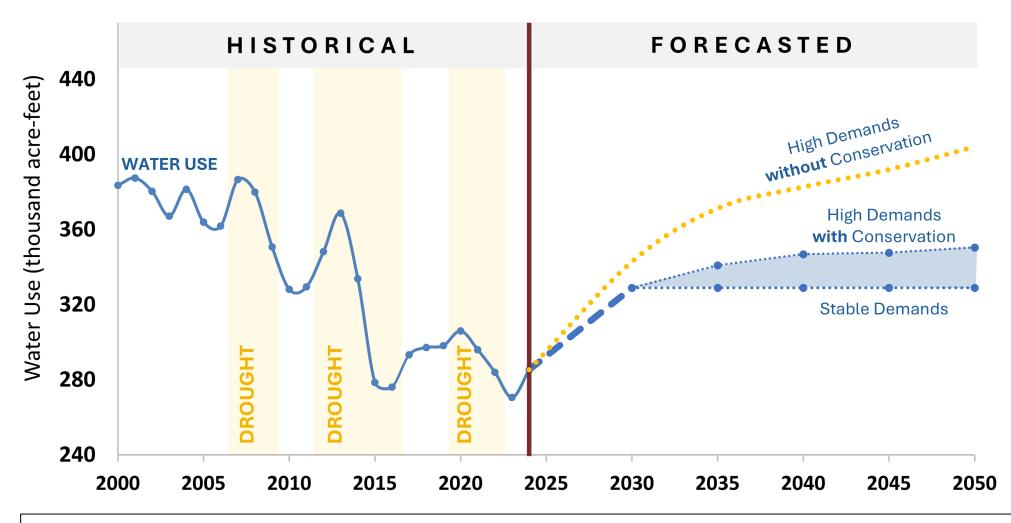
Moderately

High Demand

Impacted Imports

B Stable Demand

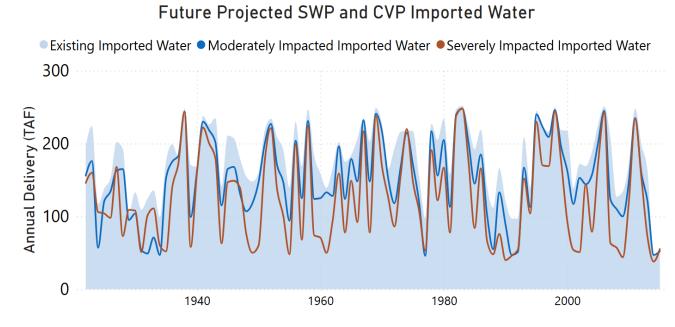
Severely Impacted Imports


High Demand

Severely Impacted Imports

Historical and Forecasted Demand

Demand modeling integrates historic water use trends, housing and economic growth, climate change, and post-drought water use rebound.


Imported Water Supply

7

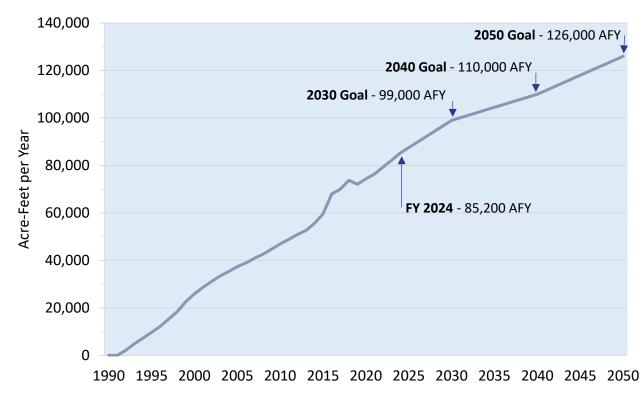
Two imported water scenarios

- Moderately impacted imports
- Severely impacted imports

Climate change considered

Baseline Assessment - Assumptions

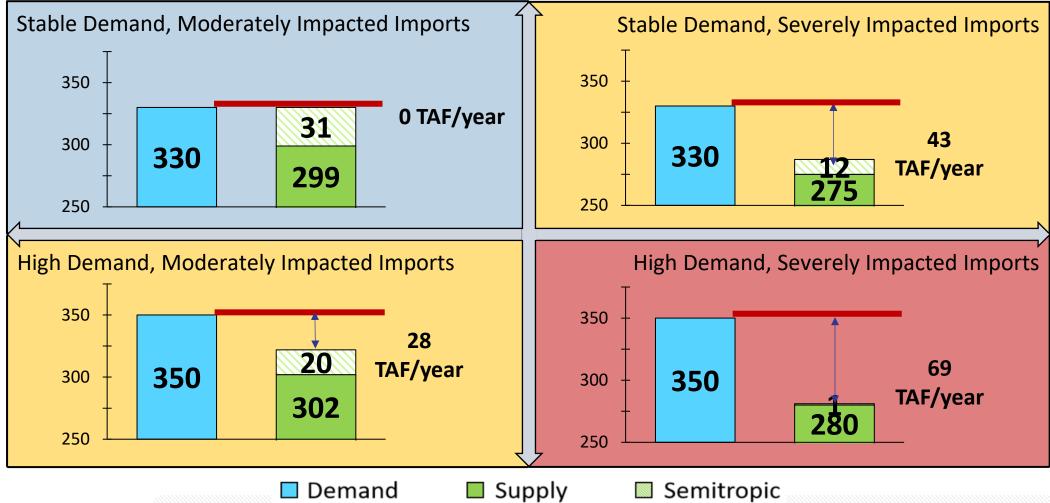
8


Achieve long-term conservation goals

Complete dam seismic retrofits by 2035

Maintain Valley Water assets

Recycled water use


Water Conservation Savings Progress

Baseline Assessment – Drought in 2050

Needs for Investment

10

- Potential impacts of lower level of service
 - Quality of life
 - Economic impact
 - Irrigation for parks and trees
 - Agricultural production
 - Subsidence
- Billions in economic losses

Project Options Grouped by Primary Benefits

Alternative Supply

Palo Alto Potable Reuse

San José Direct Potable Reuse

Refinery Recycled Water Exchange

Local Seawater Desalination

Surface Supply

Delta Conveyance Project

Sites Reservoir

Storage

Pacheco Reservoir Expansion

Groundwater Banking

B.F. Sisk Dam Raise

Recharge

Coyote Valley Recharge Pond

Butterfield Channel Managed Aquifer Recharge

Madrone Channel Expansion

San Pedro Ponds Improvement Project

- Water conservation goal
 - 126,000 AFY by 2050

- Potable reuse goal
 - 24,000 AFY by 2035
 - Long-term vision to maximize water reuse up to 32,000 AFY by 2050

- Water supply benefits
- Cost

- Reliability
- Likelihood of success
- Environmental impacts
- Jurisdiction and partnership
- Public acceptance

Cost of Major Supply Projects

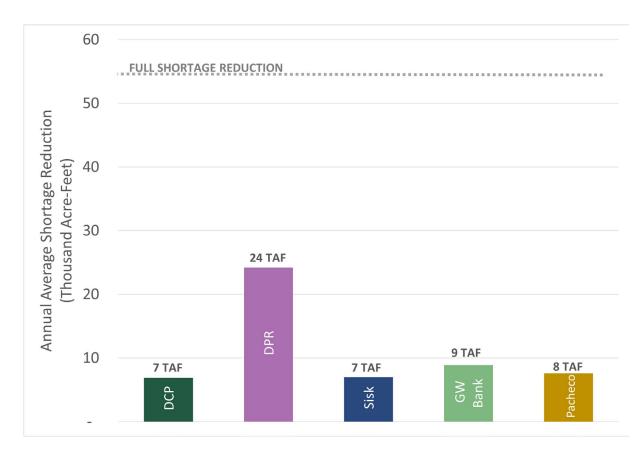
All costs are in 2025 dollars

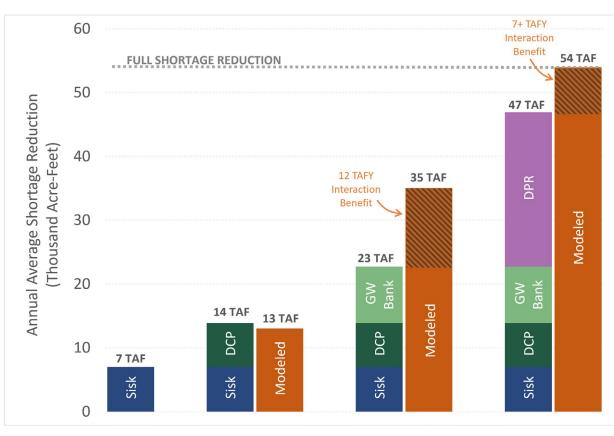
	Average	Capital	Annual	Present Value (PV) Lifecycle	Lifecycle Cost	Annualized
	Annual	Cost	O&M	Cost*	PV/Yield PV	Unit Cost
Project	Supply (AF)	(Million)	(Million)	(Million)	(\$/AF)	(\$/AF)
Palo Alto Potable						
Reuse	8,000	\$800	\$13.2	\$1,740	\$11,620	\$10,300
San José Direct						
Potable Reuse	24,000	\$2,190	\$31.1	\$2,980	\$7,120	\$5,880
Local Seawater						
Desalination	24,000	\$2,190	\$31.1	\$2,980	\$7,120	\$5,880
Refinery Recycled						
Water Exchange	8,000	\$260	\$9.5	\$470	\$2,900	\$2,760
Delta Conveyance						
Project	14,000	\$670	\$1.8	\$780	\$2,800	\$1,950
Sites Reservoir	5,000	\$150	\$0.7	\$140	\$1,280	\$1,090

Cost of Storage Projects

15

All costs are in 2025 dollars


Project	Storage (AF)	Capital Cost (Million)	Annual O&M (Million)	PV Lifecycle Cost (Million)	Lifecycle Cost PV/Storage Capacity (\$/AF)
					,
B.F. Sisk Dam Raise	60,000	\$450	\$1.9	\$540	\$8,960
Pacheco Reservoir	140,000	¢2.200	¢a.c	¢1 020	¢12.070
Expansion	140,000	\$2,208	\$2.6	\$1,820	\$12,970
Groundwater Banking	350,000	\$290	\$2.9	\$380	\$1,100


Lifecycle of 50 years for storage projects

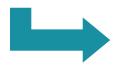
Portfolio Analysis

- Average annual shortage reduction during a six-year drought in 2050, stable demand and severely impacted imports
- Lower cost strategy
- Pacheco is shown with partners

- Drought resilient supply coupled with storage effective
- Maintaining out-of-county groundwater storage critical
- Put and Take capacity critical during drought
- Some projects work better when paired with other projects, while others are independent of each other

Put and Take Capacity

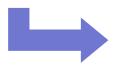
Put – amount of water that can be stored on an annual basis


Take – amount of water that can be retrieved every year

Strategies for Water Supply Reliability

18

Lower Cost (\$4.6 Billion)

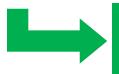

San José Direct Potable Reuse

Delta Conveyance Project

B.F. Sisk Dam Raise Groundwater Bank (250,000 AF)

South County Recharge

Local Control (\$6.7 Billion)


San José Direct Potable Reuse

Palo Alto Potable Reuse

Pacheco (No Partners) Groundwater
Bank
(150,000 AF)

South County Recharge

Diversified (\$5.9 Billion)

San José Direct Potable Reuse

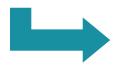
Delta Conveyance Project

Pacheco (with Partners)

B.F. Sisk Dam Raise Groundwater
Bank
(350,000 AF)

South County Recharge

Rate Impact of Water Supply Strategies


Portfolio	FY 26 to FY 30	FY 31 to FY 35	FY 36 to FY 40	FY 41 to FY 45	FY 46 to FY 50
FY 2025-26 Adopted Rates & PAWS Report	\$2,986 / AF or \$102.82 / month	\$4,756 / AF or \$163.80 / month	\$6,807 / AF or \$234.43 / month	\$8,074 / AF or \$278.08 / month	\$8,878 / AF or \$305.77 / month
Lower Cost	\$2,986 / AF or	\$4,463 / AF or	\$6,225 / AF or	\$7,180 / AF or	\$7,895 / AF or
	\$102.82 / month	\$153.71 / month	\$214.40 / month	\$247.29 / month	\$271.91 / month
Local Control	\$3,207 / AF or	\$5,547 / AF or	\$7,339 / AF or	\$8,539 / AF or	\$9,719 / AF or
	\$110.45 / month	\$191.05 / month	\$252.77 / month	\$294.09 / month	\$334.73 / month
Diversified	\$2,986 / AF or	\$4,756 / AF or	\$6,814 / AF or	\$8,277 / AF or	\$9,422 / AF or
	\$102.82 / month	\$163.80 / month	\$234.68 / month	\$285.08 / month	\$324.48 / month

^{*} Translation of portfolio costs to North County Zone W-2 Municipal & Industrial rate (\$/AF), or average monthly impact to an average household (15 hundred cubic feet for purposes of this analysis). The FY 2025-26 PAWS Report can be found online at www.valleywater.org Attachment 2
Page 19 of 28

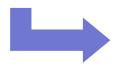
Portfolios for Worst-case Condition

Lower Cost (\$4.6 Billion -> \$4.8 Billion)

San José Direct Potable Reuse

Delta Conveyance Project

B.F. Sisk Dam Raise Groundwater


Bank
(250,000 AF)
(350,000 AF)

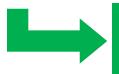
South County Recharge

Sites Reservoir

Local Control (\$6.7 Billion -> \$9.9 Billion)

San José Direct Potable Reuse

Palo Alto Potable Reuse


Pacheco (No Partners) Groundwater
Bank
(150,000 AF)
(350,000 AF)

South County Recharge

Local Desalination

Diversified (\$5.9 Billion)

San José Direct Potable Reuse

Delta
Conveyance
Project

Pacheco (with Partners)

B.F. Sisk Dam Raise Groundwater
Bank
(350,000 AF)

South County Recharge

Adaptive Management

- Planning under deep uncertainty
 - Projects still evolving
 - Uncertainty with forecasted future supply and demand
- Adaptive management framework to provide flexibility for making incremental investment decisions
- Roadmap and annual reporting

Adaptive Management Roadmap

NOW

- Focus on Lower Cost Portfolio
- Continue planning for other projects (Pacheco, Sites)
- Start Desal feasibility study
- Continue implementing conservation programs

NEAR-TERM (2-3 YEARS)

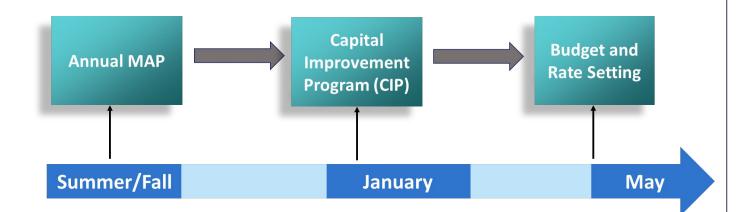
- Assess progress on project planning and implementation
- Make project decisions based on triggers, new information, and actual conditions
- Continue planning for other projects

MID-TERM (5 YEARS)

- Assess progress on project implementation
- Update demand projections and water supply outlook
- Update WSMP

Annual MAP report

INDICATORS



Sisk negotiation DPR project progress **Project decisions**

Page 22 of 28

Annual Reporting for Adaptive Process

- Track project progress
- Report conditions of indicators
- Recommend actions as needed

Indicators

- Sisk negotiation
- DPR project progress
- Upcoming project decisions
- Groundwater Bank negotiation
- Regulatory and permitting issues
- **Annual supply**
- Annual water use
- Conservation progress
- Growth trend/demand
- Regional agreements and decisions by other agencies

- Board
- Recycled Water Committee
- Water Supply and Demand Management Committee
- Agricultural Water Advisory Committee
- Environmental Water Resources Committee
- Joint Water Resources Committee (with South County)
- Water Commission

Stakeholder Engagement

- Board and Committee meetings
- Retailer meetings and review
- Stakeholder meeting and responses
- Newsletter/blog/social media

- David Sunding Professor at University of California, Berkeley
- Michael Anderson State Climatologist, Department of Water Resources
- Newsha Ajami Chief Development Officer for Research,
 Lawrence Berkeley National Lab
- Yung-Hsin Sun Senior Principal Consultant, Sunzi Consulting LLC

Executive Summary

- 1 Introduction
- 2 Water Supply System
- 3 Water Supply Challenges
- 4 Water Supply Needs Assessment
- 5 Project Options
- 6 Water Supply Strategies
- 7 Adaptive Management
- 8 Stakeholder Outreach

LIST OF APPENDICES

- A Potable Reuse Goal
- B 2050 Conservation Goal
- C Demand Model Development
- D Water Supply Modeling
- E Water Shortage Impacts
- F Cost Analysis Method and Assumptions
- G Additional Portfolios

- Stakeholder outreach
- Committee updates
- Plan finalization
- Plan adoption in the Fall

