

Water Supply Master Plan 2050

Board of Directors Meeting, January 9, 2024

Attachment 5 Page 1 of 20

WSMP 2050 Updates


Goals

Planning horizon

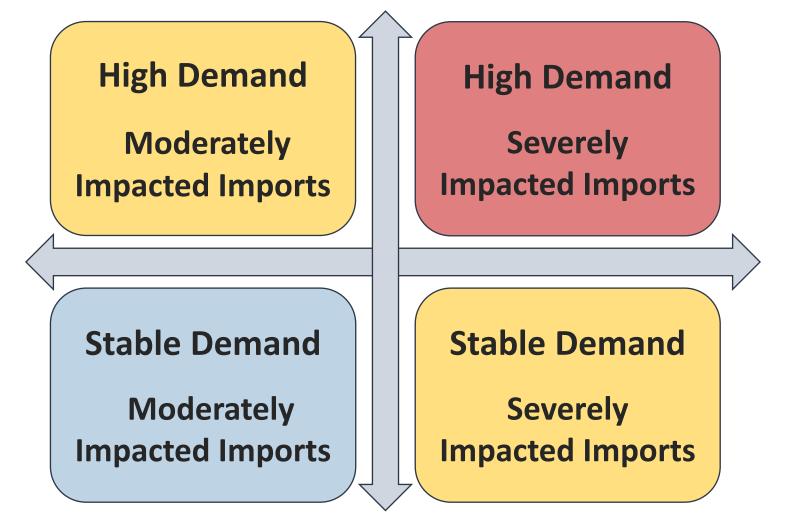
Wider range of values

Portfolio approach

Recognition of uncertainty

Recap of Last Update to Board

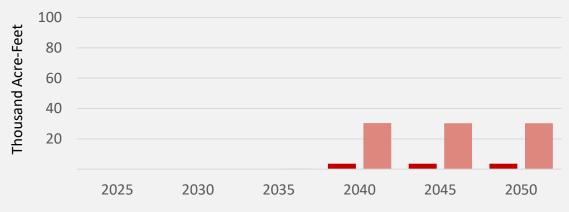
- Planning goals
- Water supply strategy
- Planning approach
- Baseline water supply needs assessment
- Project list and evaluation criteria
- Preliminary cost
- Board/committee and public engagement plans


Topics for This Update

- Water supply needs assessment
- Portfolio analysis

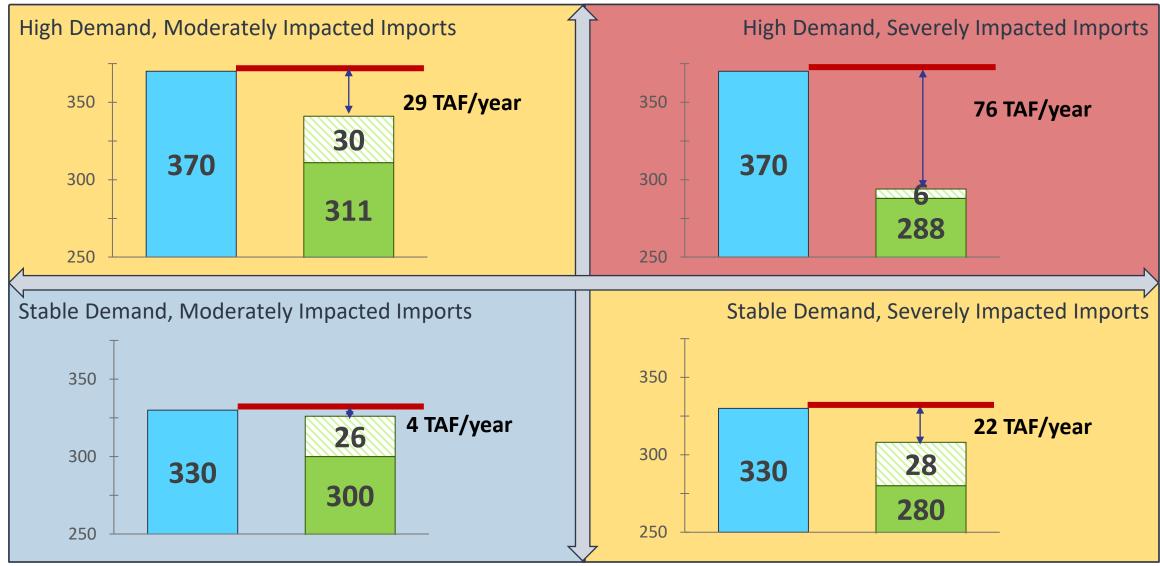
Next steps for developing recommendations

Planning Approach – Scenario Planning


Attachment 5 Page 5 of 20

Baseline Assessment

- Shortage in all scenarios and as early as 2030
- Average annual shortages
 4-76 TAF in 2050
- Out-of-County groundwater storage important


With Semitropic 🛛 📕 Without Semitropic

Stable Demand and Moderately Impacted Imports

High Demand and Severely Impacted Imports

Annual Shortage in Six-year Drought in 2050

Demand Supply Semitropic

Attachment 5 Page 7 of 20

Project List Grouped by Primary Benefits

Alternative Supply Storage Potable Reuse – Palo Alto Pacheco Reservoir Expansion Potable Reuse – San Jose Los Vaqueros Expansion **Refinery Recycled Project Groundwater Banking** Local Seawater Desalination Project **B.F. Sisk Dam Raise Surface Supply Recharge and Pipelines** Coyote Valley Recharge Pond **Delta Conveyance Project** Lexington Pipeline Sites Reservoir Lexington-Montevina Water Treatment Plant Connection Stormwater – Agricultural Land Recharge **Butterfield Channel Managed Aquifer Recharge** (FloodMar) Madrone Channel Expansion Stormwater Capture San Pedro Ponds Improvement Project

Attachment 5 Page 8 of 20

9

Project and Portfolio Analysis

- 50+ portfolios formulated
- Modeling analysis to evaluate water supply benefit
- Iterative process

Example Portfolios

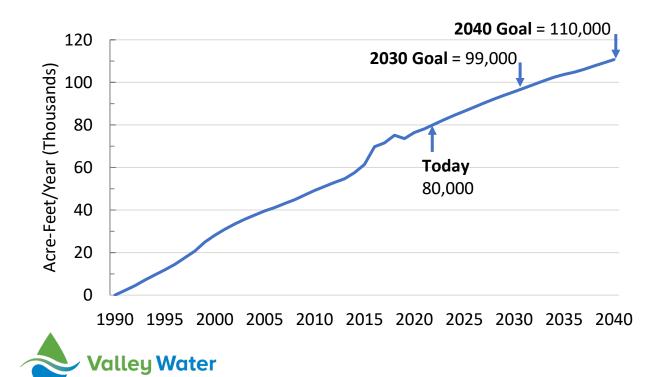
High Demand	igh Demand High Demand				
Moderately	Severely				
Impacted	Impacted				
Imports	Imports				
Stable	Stable				
Demand	Demand				
Moderately	Severely				
Moderately Impacted	Severely Impacted				

	Rate Baseline			
Project Name	1	2	3	4
Alternative Supply				
Potable Reuse – Palo Alto	\bigstar			
Potable Reuse – San Jose		\bigstar	\bigstar	\bigstar
Refinery Recycled Project				\bigstar
Local Seawater Desalination				\bigstar
Surface Supply				
Delta Conveyance Project	\bigstar		\bigstar	\bigstar
Sites Reservoir				\bigstar
Storage				
Pacheco Reservoir Expansion	\bigstar		\bigstar	
Los Vaqueros Expansion	\bigstar	\bigstar	\bigstar	\bigstar
B.F. Sisk Dam Raise	\bigstar	\bigstar	\bigstar	\bigstar
Groundwater Banking (TAF)	350	275	250	0
Recharge and Pipelines				
Coyote Recharge Pond		\bigstar	Attachmen	t 5
San Pedro Ponds Improvement		\bigstar	Page 10 of	

Preliminary findings

- Drought resilient supply coupled with storage effective
- Maintaining out-of-county groundwater storage critical
- Some projects work better when paired with other projects, while others are independent of each other
- Multiple options under each future, other factors into play
- More portfolios needed to provide a full range of options.

Cost analysis


- Updating project cost estimates
 - Total lifecycle cost
 - Unit cost
- Develop cost of portfolios
- Analyze impact on water rate

Conservation Effort and Reuse

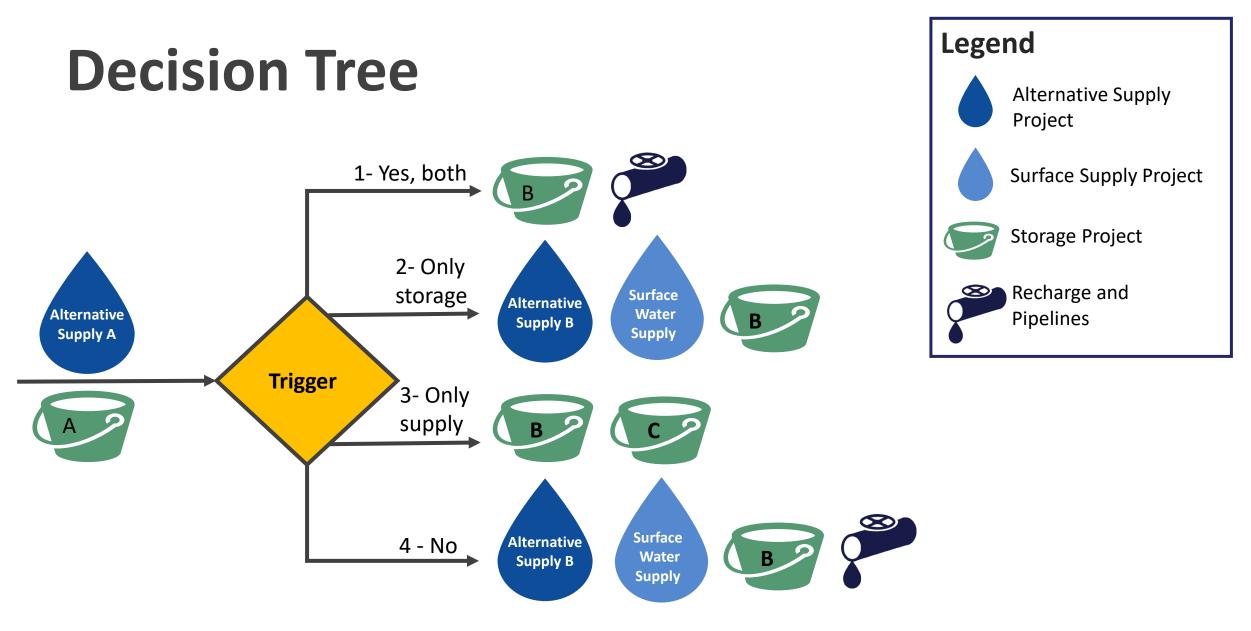
Continued conservation

- Develop water reuse goal
- Develop 2050 conservation targets

Partner Agency	Potential Future Wastewater Available (AFY)	Potential Purified Water Production (AFY)
Palo Alto	10,000	8,000
Sunnyvale	5,600	4,800
San Jose/ Santa Clara	40,000	24,000 – 32,000
SCRWA	Fully Utilized in Summer	
Countywide Total:	55,600	36,800 - 44,800

Portfolio Evaluation and Comparison

Project Evaluation Meet water supply needsCost/rate impact


Reliability
Timing
Readiness/likelihood of success

 Remaining criteria (e.g., Environmental Impacts/Justice, Jurisdiction/Partnership)

Decision Tree

Attachment 5 Page 14 of 20

Attachment 5 Page 15 of 20

Stakeholder Engagement

- Water Retailer Meeting
- Environmental Water Resources Committee
- Agricultural Water Advisory Committee
- Joint Water Resources Committee (with South County)
- Environmentally focused stakeholder group
- Water Commission Meeting
- Newsletter/blog/social media

Expert Engagement

- Cost analysis approaches
- Economic benefits of water supply projects
- Conservation targets and programs
- Recycled and purified water projects
- Project evaluation and scenario planning framework

Next Steps

- Finalize conservation and reuse goals
- Evaluate additional portfolios
- Determine cost/rate impacts
- Provide update to support upcoming project decisions

WSMP Update Schedule

2023

- Establish overall framework and procedures
- Project/portfolio analysis and evaluation
- Stakeholder engagement

2024

- Portfolio analysis and recommendations
- Plan development
- Stakeholder outreach
- Plan adoption

Attachment 5 Page 19 of 20

Feedback Requested

- Any specific portfolios
- Overall evaluation framework
- Information to help inform decisions

