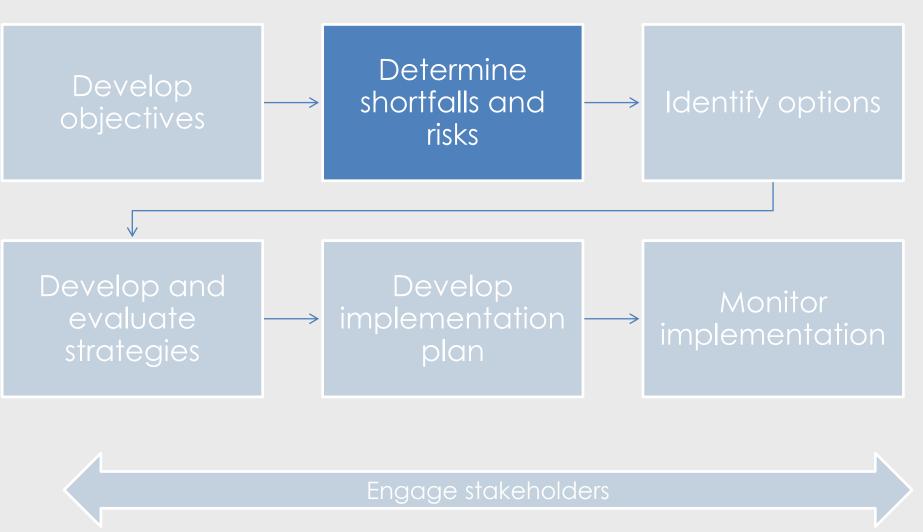

Water Supply Master Plan Update

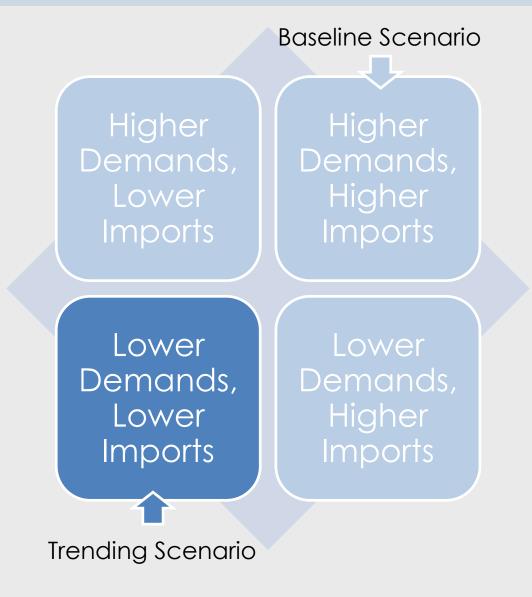
April 25, 2017

Presentation Outline


- Review previous work
 - Planning objectives
 - Water supply outlook and risks
 - Projects and programs
- Discuss initial water supply strategies/portfolios
- Receive stakeholder input
 - ▶ Phone survey
 - Expert Panel Paula J. Landis, Dr. Ed Maurer, David Mitchell

Objectives Used to Assess Different Strategies

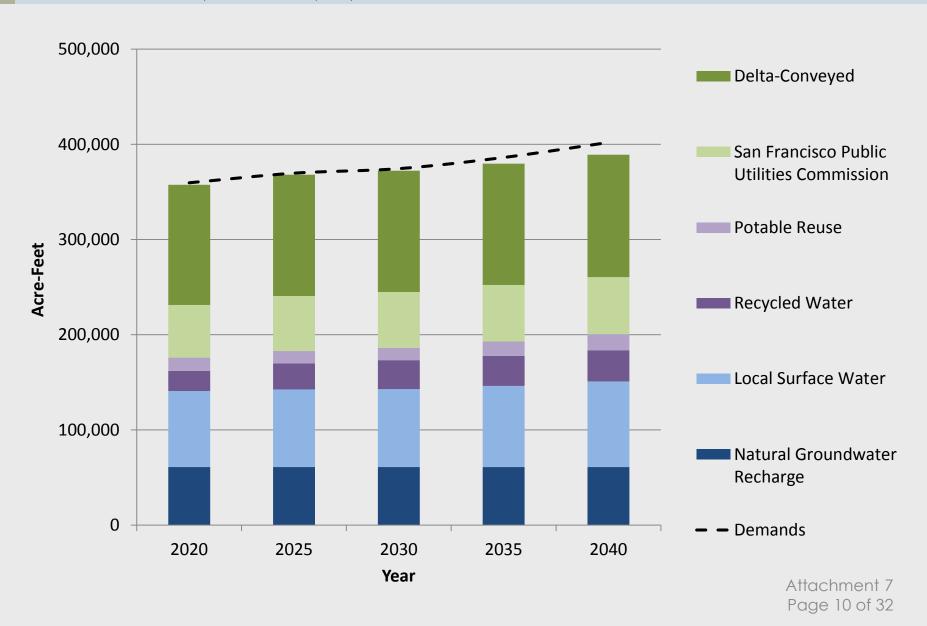
Objective	Sub-Objectives
 Provide a Reliable Supply of Water for Municipalities, Industries, Agriculture, and the Environment 	 Meet demands Maintain groundwater storage Secure existing supplies Reduce reliance on Delta Maximize water conservation/water use efficiency
Ensure Drinking Water Quality	Protect groundwater qualityMeet drinking water regulations
3. Minimize Costs	•Minimize life-cycle costs
4. Maximize Water System Flexibility	 •Maximize District influence •Minimize implementation issues •Allow for phased implementation •Adapt to climate change
5. Protect the Natural Environment	Protect and restore aquatic ecosystemsReduce greenhouse gas emissions
6. Ensure Community Benefits	 Fulfill customer expectations/avoid property impacts Provide access for recreation Provide flood protection Attachment 7 Page 5 of 32



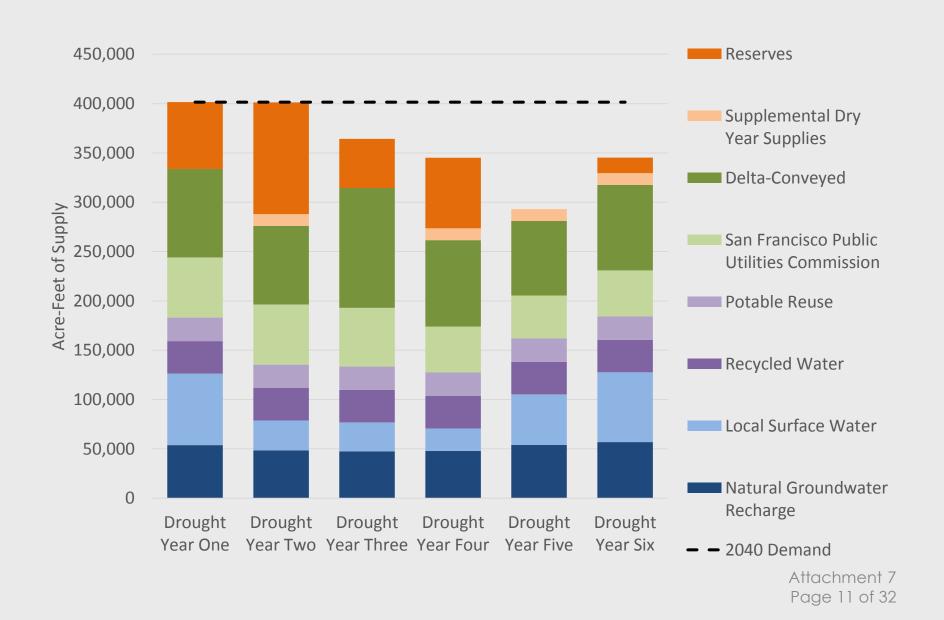
Need to consider risks

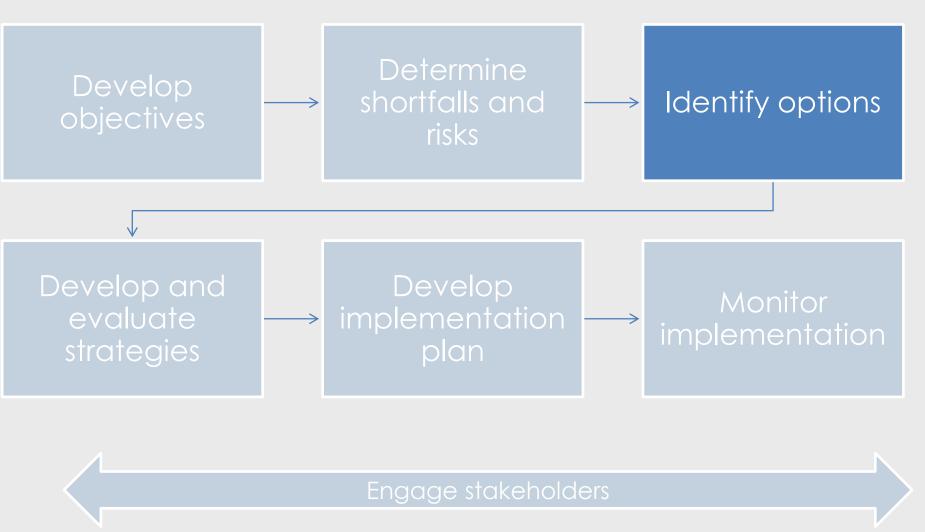
- Climate change
- Regulations
- AgingInfrastructure
- ▶ Funding
- Development and land use

Need to consider alternative scenarios


Trending Scenario vs. Baseline Scenario

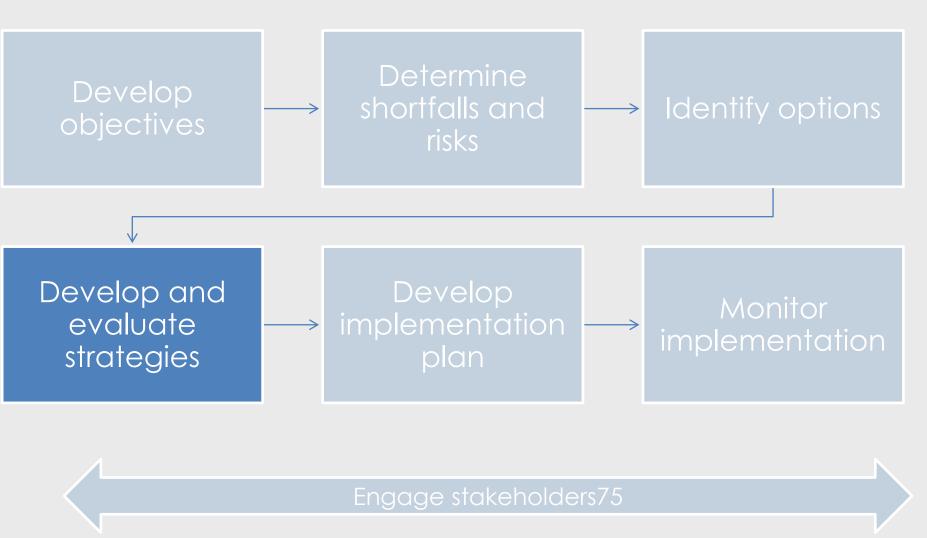
Assumes 24,000 AFY of potable reuse capacity and other base case investments


Parameter	2040 Baseline	2040 Trending
Average Annual Supply (Acre- Feet, AF)	440,000	391,000
Normal Year Demand (AF)	435,000	402,000
Maximum Level of Shortage (% of Normal Year Demands)	Stage 3 (15%)	Stage 4 (30%)
Number of Years with Shortage (Over 94 Years)	13	22
Number of Years with Stage 2 (10%) Shortages	7	16
Number of Years with Stage 3 (15%) Shortages	6	4
Number of Years with Stage 4 (30%) Shortages	0	2


Supplies are sufficient through 2030

Assumes 24,000 AFY of potable reuse capacity and other base case investments

Droughts are the greatest challenge



Water Supply Options

- Storage, inside and outside county
- Groundwater recharge ponds
- Additional potable reuse
- Recycled water
- Conservation and demand management
- Onsite Reuse

- Raw Water Pipelines
- Ag land fallowing
- Stormwater reuse
- Desalination
- Transfers/dry year options
- Additional water rights
- California WaterFix

Water Supply Strategies/Portfolios

See Attachment 3 for details

- 1. Modular
- 2. Low Risk
- 3. Local Control
- 4. Low Cost
- 5. Climate Change (Operational Flexibility)
- 6. Climate Change (Dry Year Supplies)
- 7. Local Storage
- 8. Statewide Storage
- 9. Secure Imported Supplies

"No Regrets" Package Proposed for Each Strategy

- Model Ordinance
- Gray Water Expansion
- ► Leak Repair Incentive
- Stormwater
 - ► Saratoga 1
 - San Jose
 - Rain Garden Rebate
 - Ag Land Recharge
- Advanced Metering Infrastructure

Strategies

Key Projects	Strategy 1: Modular	Strategy 2: Low Risk	Strategy 3: Local Control
Groundwater Banking	•	•	
Uvas Pipeline			•
Transfers	•	•	
Los Vaqueros Reservoir		•	
Water Rights Purchase	•	•	
Potable Reuse			•
Pacheco Reservoir			•

District Lifecycle Cost	\$1.3 billion	\$1.6 billion	\$3.1 billion
Meets Level of Service Goal	Yes	Yes	Yes

Strategies Continued

Key Projects	Strategy 4: Low Cost	Strategy 5: Operational Flexibility	Strategy 6: Dry Year Supplies
Regional Desal	•		•
Groundwater Banking	•	•	•
Uvas Pipeline	•	•	
Sites Reservoir	•		
Transfers			•
Los Vaqueros		•	•
Calero		•	
Potable Reuse			•
Pacheco Reservoir		•	
California WaterFix		•	
District Lifecycle Costs	\$800 million***	\$4.6 billion	\$2.1 billion
Meets Level of Service	Yes***	Yes	Yes
Goal			Attachment 7

^{***} Additional Sites Reservoir modeling is necessary to confirm yield

Page 18 of 32

Strategies Continued

Key Projects	Strategy 7: Local Storage	Strategy 8: Statewide Storage	Strategy 9: Secure Imported Supplies
Groundwater Banking		•	
Uvas Pipeline	•		
Sites Reservoir		•	
Los Vaqueros Reservoir	•		
Pacheco Reservoir	•		
California Water Fix			•

District Lifecycle Costs	\$2.1 billion	\$400 million***	\$1.9 billion
Meets Level of Service Goal	0	Yes***	Yes

^{***} Additional Sites Reservoir modeling is necessary to confirm yield

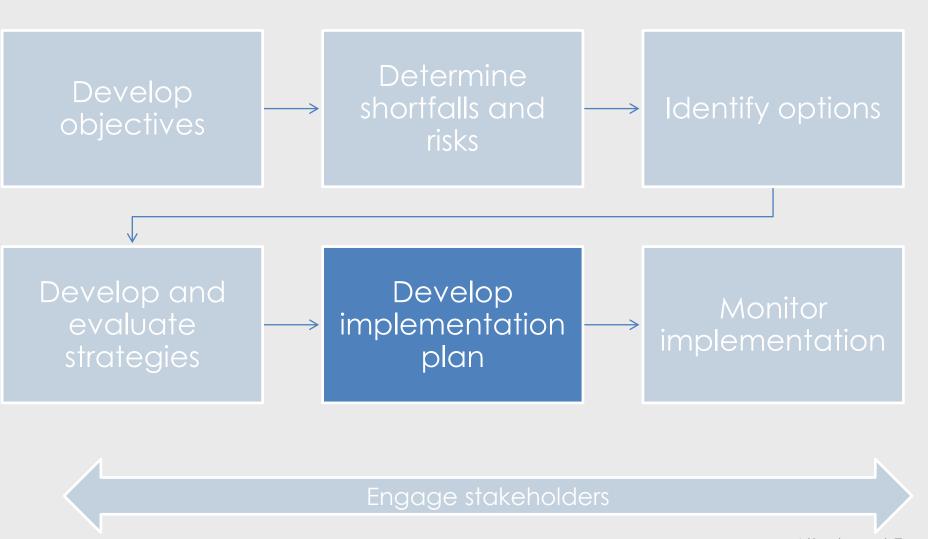
Strategy/Portfolio Analysis Results

See Attachment 5 for details

		Sup	Water	Water Quality			
Strategy/Portfolio	Meet Demands	Maintain Groundwater Storage	Secure Existing Supplies	Reduce Reliance on Delta	Maximize Water Use Efficiency	Protect Groundwater Quality	Meet Drinking Water Regulations
Strategy 1: Modular	+	++	-	-	+	Ø	Ø
Strategy 2: Low Risk	+	++	-	-	+	Ø	Ø
Strategy 3: Local Control	+	+	++	Ø	+	++	+
Strategy 4: Low Cost	+	Ø	-	-	+	+	Ø
Strategy 5: Operational Flexibility	+	++	-		Ø	8	+
Strategy 6: Adaptation	+	+	8	8	Ø	++	Ø
Strategy 7: Local Storage	-	-	++	Ø	Ø	8	+
Strategy 8: Statewide Storage	+	++	-	-	Ø	8	Ø
Strategy 9: Secure Imported Supplies	+	++	-		Ø	8	Ø

Note: Analysis is in comparison to the base case

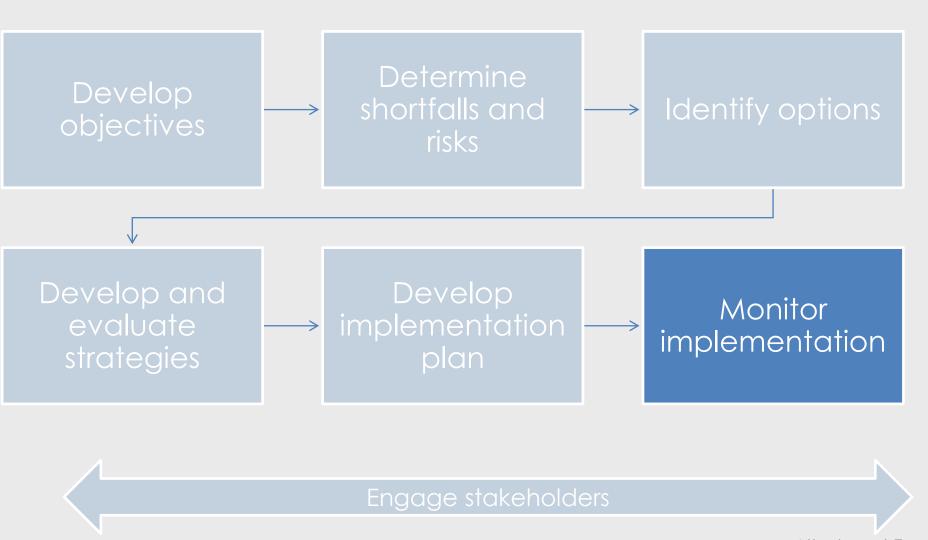
Strategy/Portfolio Analysis Results - Continued


	Costs		Flexibility			
Strategy/Portfolio	Minimize Costs	Maximize District Influence	Minimize Implementation Complexity	Allows for Phasing	Adapts to Climate Change	
Strategy 1: Modular	+	Ø	+	++	+	
Strategy 2: Low Risk	+	ı	+	++	+	
Strategy 3: Local Control		++		1	++	
Strategy 4: Low Cost	++		-	-	++	
Strategy 5: Operational Flexibility					+	
Strategy 6: Adaptation	+	-	-	-	++	
Strategy 7: Local Storage	10	++		-	+	
Strategy 8: Statewide Storage	++		-		+	
Strategy 9: Secure Imported Supplies	+				+	

Strategy/Portfolio Analysis Results - Continued

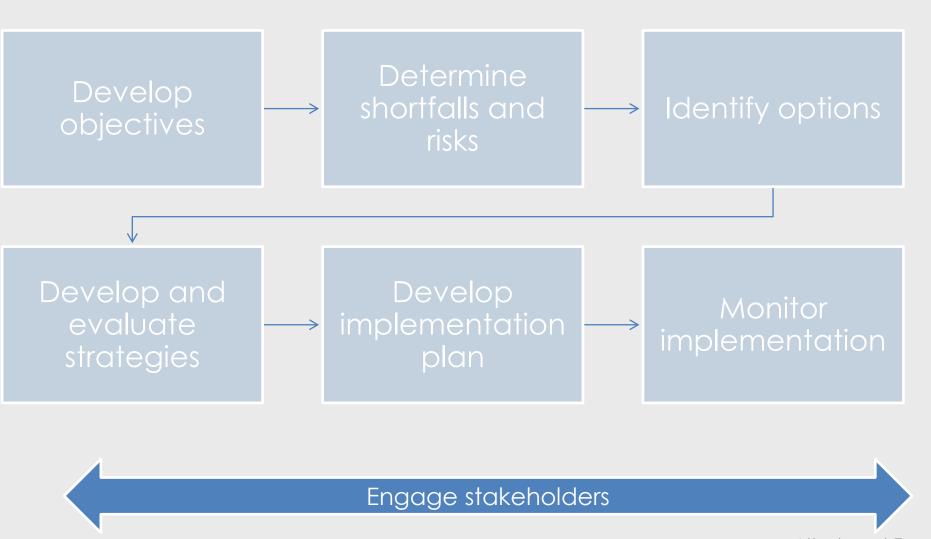
	Environ	mental			
Strategy/Portfolio	Protect Aquatic Ecosystems	Reduce Greenhouse Gas Emissions	Impacts to Property Owners	Oben Space	Flood Protection
Strategy 1: Modular	10.	100	10.	+	+
Strategy 2: Low Risk	10.	100	10.	+	+
Strategy 3: Local Control			10.	+	+
Strategy 4: Low Cost	-	-	10.	+	+
Strategy 5: Operational Flexibility	-	100	-	++	++
Strategy 6: Adaptation	18		18	18	8
Strategy 7: Local Storage		-	-	++	++
Strategy 8: Statewide Storage	-	-	18	10.	8
Strategy 9: Secure Imported Supplies	++	Ø	Ø	Ø	Ø

All strategies/portfolios can be optimized


- ► Strategies 1-Modular and 2-Low Risk perform the best overall
- Strategy 3-Local Control performs well for water supply reliability but at a cost
- ► Strategy 7-Local Storage did not meet level of service goal

Implementation plan in Fall 2017

- ► Schedule
- ▶ Costs
- ▶ Financing
- Monitoring approach
- Triggers and responses to manage uncertainty



Monitoring will be ongoing

Attachment 7 Page 27 of 32

Stakeholder Input – Phone Survey

- Voters see need to invest in supply reliability
- ► Majority are open to small rate increase (\$5 \$10 per month) for supply reliability, but not a larger increase (\$20 \$30 per month)
- Like non-potable recycled water use, stormwater capture, and updating aging infrastructure

Stakeholder Input – Level of Service Goal

- Retailers seem willing to make investments in supply reliability if there is a high degree of certainty in results
- "Making Conservation a Way of California Life" policy implementation may affect the ability to achieve high levels of emergency reductions in the future

Expert Panel Input

- Met four times
- Reviewed staff work on cost and yield calculations, risk assessment, project identification, and strategy development and assessment
- Comments helpful, especially those related to evaluating and presenting risk and uncertainty

Next steps

Develop recommended strategies/portfolios (July 2017)

Prepare 2017 Water Supply Master Plan (December 2017)

Develop implementation plan (September 2017)