PROJECT IMPLEMENTATION CONSIDERATIONS FOR THE CALIFORNIA WATERFIX

Santa Clara Valley Water District May 25, 2017

PROJECT LOCATION

Bay Delta Region

CALIFORNIA WATER FIX- OVERALL PROGRAM

TUNNEL PORTIONS OF PROGRAM

MAIN TUNNELS

- 100 year life
- Twin bore main tunnels
- 150 ft below grade
- Concrete segmental liner
- Pressurized face Tunnel Boring Machine construction
- 45 ft excavated diameter
- 40 ft finished internal diameter

LARGE DIAMETER
 TUNNEL BORING MACHINE PROJECTS

GEOTECHNICAL PROFILE AT TUNNEL DEPTH

Note: Over 200 borings/CPTs completed

TYPICAL TUNNEL SEGMENTS

REUSABLE TUNNEL MATERIAL

- Preliminary level of testing (DWR Report)
- Sterile material
- Suitable for engineering fill
- Stockpiles at 6-14 ft
- Existing restoration uses
- SFPUC Bay Tunnel Bair Island
- London Crossrail Wallasea Island

PROGRAM FACTS

- 700,000 tunnel segments
- 23 million cubic yards of excavated tunnel material
- 10-12 Tunnel Boring Machines operating simultaneously
- 195 Mega Watts of power required for Tunnel Boring Machines
- Existing levees protect project sites
- Limited highway access in Delta

RIVER INTAKES

PROTECTING FISH

CLIFTON COURT PUMP PLANTS

PROGRAM ESTIMATES

	Amount (\$ billions)
Total	$\$ 14.94$
	$\$ 1.91$
PM/CM/Engineering	$\$ 6.82$
Tunnels/shafts construction	$\$ 2.68$
Remaining construction	$\$ 0.15$
Land acquisition	$\$ 3.38$
Contingency (approx. 36\% for tunnels/shafts and remaining construction)	

Program Estimate developed in September 2015

DESIGN AND CONSTRUCT ENTERPRISE

ORGANIZATIONAL STRUCTURE

DCE PROGRAM SCHEDULE

REVIEW OF OTHER MEGA-TUNNEL PROJECTS

- The Eurasia Tunnel - Turkey
- Lee Tunnel - London
- Port of Miami Tunnel - Florida
- East Side Access - New York
- Blue Plains Tunnel Project - District of Columbia
- Bay Tunnel - San Francisco
- Willamette River Combined Sewer Outfall Program - Portland
- Gotthard Base Tunnel - Swiss Alps
- SR-99 Alaskan Way Replacement - Seattle

THE EURASIA TUNNEL - TURKEY

2.1 miles

THE EURASIA TUNNEL - TURKEY

Project Information

- Transportation Tunnel 40 ft Internal Diameter (ID) x 2.1 miles
- 320 ft deep
- Completed Dec 2016
- 3 months ahead of schedule
- Challenges
- Complex geology, seismic deformations, and high groundwater pressure

PORT OF MIAMI TUNNEL - FLORIDA

PORT OF MIAMI TUNNEL

Project Information

- (2) 39 ft ID $\times 4,200 \mathrm{ft}$ Long Transportation Tunnels
- 120 ft deep
- Completion May 2014
- On schedule
- Within budget
- Challenges
- Porous coral and limestone required grouting, restricted access above
 tunnel due to shipping channel

BLUE PLAINS TUNNEL PROJECT DISTRICT OF COLUMBIA

BLUE PLAINS TUNNEL PROJECT

Project Information

- $23 \mathrm{ft} \mathrm{ID} \times 24,200 \mathrm{ft}$ CSO Tunnel
- 160 ft deep
- Completed Dec 2015
- 3 months ahead of schedule
- Under budget
- Challenges
- Large deep shafts, existing infrastructure above tunnel

BAY TUNNEL - SAN FRANCISCO

BAY TUNNEL - SAN FRANCISCO

Project Information

- 15 ft ID $\times 5$ mile water tunnel
- 110 ft deep
- Completed Oct, 2014
- On schedule
- Within budget
- Challenges
- Long tunnel drive, no intermediate shafts, limited surface access, and high ground water pressure (3.5 bar)

WILLAMETTE RIVER COMBINED SEWER OUTFALL PROGRAM - PORTLAND

WILLAMETTE RIVER TUNNELS - PORTLAND

Project Information

- (1) $14 \mathrm{ft} \mathrm{ID} \times 3.5$ mile 120 ft deep and (1) 22 ft ID $\times 6$ mile
- 150 ft deep CSO tunnels
- Cost Reimbursable Fixed Fee
- Construction Complete Feb 2012 8 months ahead of schedule
- Construction value US $\$ 719$ M, $\$ 65 \mathrm{M}$ under budget
- Challenges
- Schedule, existing infrastructure, groundwater, Tunnel Boring Machine breakout, soil modification, and subcontract changes

GOTTHARD BASE TUNNELS - SWISS ALPS

GOTTHARD BASE TUNNELS-SWISS ALPS

Project Information

- (2) 30 ft ID $\times 35$ mile rail tunnel
- Up to 6,560 ft deep
- Completed June 2016 within schedule (17 years)
- Final construction cost $\$ 12.5 \mathrm{~B}$ over budget by $\$ 0.8 \mathrm{~B}$
- Challenge: Safety, geology
- For the 2 main tunnels and the safety, ventilation and cross cuts, a total of 95
 miles tunnel has been bored

SR-99 ALASKAN WAY REPLACEMENT-SEATTLE

SR-99 ALASKAN WAY TUNNEL-SEATTLE

Project Information

- 53 ft ID x 2 mile transportation tunnel
- Construction schedule
- Approximately 2 year delay
- Challenges
- Equipment malfunction, existing pile foundations and other infrastructure, difficult ground

SEATTLE TUNNEL SUCCESS

Attachment 3, Page 32 of 34

LESSONS LEARNED

- Proactive risk management strategy at all stages
- Assign risk to appropriate party
- Select project delivery method to maximize project benefits
- Get construction input early
- Invest in good geotechnical program and GBR
- Must have strong owner involvement
- Co-locate project team
- Resolve Right-of-Way and property acquisition early
- Resolve utility issues early
- Identify long lead items early
- Proactively manage logistical issues
- Develop effective program communication strategy

Attachment 3, Page 34 of 34

