

PROJECT IMPLEMENTATION CONSIDERATIONS FOR THE CALIFORNIA WATERFIX

Santa Clara Valley Water District May 25, 2017

CALIFORNIA WATER FIX- OVERALL PROGRAM

TUNNEL PORTIONS OF PROGRAM

MAIN TUNNELS

- 100 year life
- Twin bore main tunnels
- 150 ft below grade
- Concrete segmental liner
- Pressurized face Tunnel Boring Machine construction
- 45 ft excavated diameter
- 40 ft finished internal diameter

LARGE DIAMETER TUNNEL BORING MACHINE PROJECTS

GEOTECHNICAL PROFILE AT TUNNEL DEPTH

Note: Over 200 borings/CPTs completed

Attachment 3, Page 7 of 34

TYPICAL TUNNEL SEGMENTS

REUSABLE TUNNEL MATERIAL

- Preliminary level of testing (DWR Report)
 - Sterile material
 - Suitable for engineering fill
- Stockpiles at 6-14 ft
- Existing restoration uses
 - SFPUC Bay Tunnel Bair Island
 - London Crossrail Wallasea Island

PROGRAM FACTS

- 700,000 tunnel segments
- 23 million cubic yards of excavated tunnel material
- 10-12 Tunnel Boring Machines operating simultaneously
- 195 Mega Watts of power required for Tunnel Boring Machines
- Existing levees protect project sites
- Limited highway access in Delta

RIVER INTAKES

PROTECTING FISH

CLIFTON COURT PUMP PLANTS

PROGRAM ESTIMATES

	Amount (\$ billions)
Total	\$ 14.94
PM/CM/Engineering	\$ 1.91
Tunnels/shafts construction	\$ 6.82
Remaining construction	\$ 2.68
Land acquisition	\$ 0.15
Contingency (approx. 36% for tunnels/shafts and remaining construction)	\$ 3.38

Program Estimate developed in September 2015 Program Estimate in 2014 Dollars

DESIGN AND CONSTRUCT ENTERPRISE ORGANIZATIONAL STRUCTURE

Attachment 3, Page 15 of 34

DCE PROGRAM SCHEDULE

REVIEW OF OTHER MEGA-TUNNEL PROJECTS

- The Eurasia Tunnel Turkey
- Lee Tunnel London
- Port of Miami Tunnel Florida
- East Side Access New York
- Blue Plains Tunnel Project District of Columbia
- Bay Tunnel San Francisco
- Willamette River Combined Sewer Outfall Program Portland
- Gotthard Base Tunnel Swiss Alps
- SR-99 Alaskan Way Replacement Seattle

THE EURASIA TUNNEL – TURKEY

2.1 miles ——

Attachment 3, Page 18 of 34

Ø

THE EURASIA TUNNEL – TURKEY

Project Information

- Transportation Tunnel
 40 ft Internal Diameter (ID) x 2.1 miles
- 320 ft deep
- Completed Dec 2016
 - 3 months ahead of schedule
- Challenges
 - Complex geology, seismic deformations, and high groundwater pressure

PORT OF MIAMI TUNNEL - FLORIDA

PORT OF MIAMI TUNNEL

Project Information

- (2) 39 ft ID x 4,200 ft Long Transportation Tunnels
- 120 ft deep
- Completion May 2014
 - On schedule
 - Within budget
- Challenges
 - Porous coral and limestone required grouting, restricted access above tunnel due to shipping channel

BLUE PLAINS TUNNEL PROJECT DISTRICT OF COLUMBIA

Attachment 3, Page 22 of 34

BLUE PLAINS TUNNEL PROJECT

Project Information

- 23 ft ID x 24,200 ft CSO Tunnel
- 160 ft deep
- Completed Dec 2015
 - 3 months ahead of schedule
 - Under budget
- Challenges
 - Large deep shafts, existing infrastructure above tunnel

Attachment 3, Page 23 of 34

BAY TUNNEL – SAN FRANCISCO

BAY TUNNEL – SAN FRANCISCO

Project Information

- 15 ft ID x 5 mile water tunnel
- 110 ft deep
- Completed Oct, 2014
 - On schedule
 - Within budget
- Challenges
 - Long tunnel drive, no intermediate shafts, limited surface access, and high ground water pressure (3.5 bar)

WILLAMETTE RIVER COMBINED SEWER OUTFALL PROGRAM – PORTLAND

WILLAMETTE RIVER TUNNELS – PORTLAND

Project Information

- (1) 14 ft ID x 3.5 mile 120 ft deep and (1) 22 ft ID x 6 mile
- 150 ft deep CSO tunnels
- Cost Reimbursable Fixed Fee
- Construction Complete Feb 2012
 8 months ahead of schedule
- Construction value US \$719 M, \$65M under budget
- Challenges
 - Schedule, existing infrastructure, groundwater, Tunnel Boring Machine breakout, soil modification, and subcontract changes

GOTTHARD BASE TUNNELS – SWISS ALPS

GOTTHARD BASE TUNNELS-SWISS ALPS

Project Information

- (2) 30 ft ID x 35 mile rail tunnel
- Up to 6,560 ft deep
- Completed June 2016 within schedule (17 years)
- Final construction cost \$12.5B over budget by \$0.8B
- Challenge: Safety, geology
- For the 2 main tunnels and the safety, ventilation and cross cuts, a total of 95 miles tunnel has been bored

SR-99 ALASKAN WAY REPLACEMENT-SEATTLE

Attachment 3, Page 30 of 34

SR-99 ALASKAN WAY TUNNEL-SEATTLE

Project Information

- 53 ft ID x 2 mile transportation tunnel
- Construction schedule
 - Approximately 2 year delay
- Challenges
 - Equipment malfunction, existing pile foundations and other infrastructure, difficult ground

SEATTLE TUNNEL SUCCESS

LESSONS LEARNED

- Proactive risk management strategy at all stages
- Assign risk to appropriate party
- Select project delivery method to maximize project benefits
- Get construction input early
- Invest in good geotechnical program and GBR
- Must have strong owner involvement
- Co-locate project team
- Resolve Right-of-Way and property acquisition early
- Resolve utility issues early
- Identify long lead items early
- Proactively manage logistical issues
- Develop effective program communication strategy

Attachment 3, Page 34 of 34