

Water Supply Master Plan 2040 Monitoring and Assessment Program Annual Update

Presented by: Samantha Greene, Ph.D., Water Supply Planning and Conservation Unit

Attachment 4 Page 1 of 20

Water Supply "Ensure Sustainability" Strategy

Secure

- Capital Improvement
 Program Projects
- Delta Conveyance
 Project

Expand

- Water Conservation
- Stormwater Capture
- Potable Reuse

Optimize

- Pacheco Reservoir Expansion
- Transfer-Bethany Pipeline
- South County Recharge

Attachment 4 Page 2 of 20

MAP PURPOSE AND 2021 GOALS

Track Water Supply Master Plan implementation and provide mechanism to update the implementation strategy as needed.

Historic and Forecasted Demands

Attachment 4 Page 3 of 20

Level of Service Goal

Not exceed a 20% water use reduction call during water shortages

Attachment 4 Page 4 of 20

2021 RISK ASSESMENT

RISK ASSESMENT GOAL

Evaluated risks that may reduce project success -> Timely project completion -> Provides needed benefits

Risk Severity

Risk Assessment Progress

Internal stakeholder meetings to discuss risk assessment approach and results

10 internal units evaluated risks to projects

Completed risk assessment report

Next Step: work with project leads to mitigate identified risks

Attachment 4 Page 5 of 20

CLIMATE CHANGE APPROACH

LOCAL WATER SUPPLY IMPACTS

- Local reservoir inflows and evaporation, water use, precipitation, and natural groundwater recharge
- Used 4 climate models that bracket the range of local impacts

IMPORTED WATER SUPPLY IMPACTS

- Updated DWR CalSim II DCR 2019 future scenario to consider climate change
- Update informed by DWR climate change studies and historic data
- Forecasting a 25% decrease in imported water supplies

Attachment 4 Page 6 of 20

MODELING ANALYSIS APPROACH

- $\langle \bigcirc \rangle$
- Aim: meet countywide demands
- 94-yr simulation

*-

- Model includes:
 - **b** Supplies
 - **b** Storage
 - **A** Recharge facilities
 - Treatment plants
 - **6** Conveyance facilities
- Five climate scenarios
- Examine water supply reliability

Number of Years in Stage 6 (50%)
Number of Years in Stage 5 (40%)
Number of Years in Stage 4 (30%)
Number of Years in Stage 3 (20%)
Number of Years in Stage 2 (10%)

MAP 2021 PROGRESS – WATER SUPPLY PLANNING

Water Shortage Contingency Years for Moderate Climate Change Scenario in 2045

- Level of service goal is to not exceed stage 2 (orange)
- Locally renewable water supplies are the most drought and climate change resilient

MAP 2021 PROGRESS – WATER SUPPLY PLANNING

Total Water Storage Volume for Moderate Climate Change Scenario in 2045

- Analysis indicates existing available storage may be sufficient in future
- Future infrequent wet years with prolonged drier periods indicate potential difficulty in filling storage
 - > Potable reuse increases storage, reinforcing its drought resiliency
 - Diversification could improve operational flexibility

Storage Diversification Scenarios

Note: Slide for discussion purposes only. Scenarios are preliminary

Attachment 4 Page 10 of 20

Project Cost Comparison (2020\$)

Project	Capital Cost ¹	Annual Average O&M ¹	Typical Lifespan
Direct Potable Reuse (24 TAF)	570 Million	22 Million	50 years
Indirect Potable Reuse (11-24 TAF)	500-700 Million	10-20 Million	50 years
Lexington Pipeline	100 Million	<1 Million	75-150 years
Los Vaqueros Reservoir 30 TAF (Transfer-Bethany 5% Share Only)	165 Million (35 Million)	2 Million (<1 Million)	75-150 years
Pacheco Reservoir 140 TAF (55 TAF storage share)	1.7 Billion ² (1 Billion)	5 Million (3 Million)	75-150 years
Refinery Recycled Water Exchange ³	210 Million	9 Million	50 years
Sites Reservoir (0.2-3.2% share)	10-140 Million	<1 Million	75-150 years
Delta Conveyance Project	TBD	TBD	75-150 years

¹All costs are levelized to 2020 dollars

²Pacheco Reservoir capital cost accounts for Water Storage Infrastructure Program funding that reduces the capital cost.

³Costs assume a 50% cost share with Contra Costa Central Sanitary District

CONCLUSIONS AND NEXT STEPS

Modeling Conclusions

Analysis indicates total existing storage capacity may be sufficient
 Storage diversification may help improve storage utility
 LOS goal is met with projects that help reliably exercise storage

Next Steps

Receive feedback from the Board of Directors
 Integrate Board feedback into MAP analysis

Attachment 4 Page 12 of 20

QUESTIONS

System Configuration

System Configuration

Total Water Storage Volume

Total Water Storage Volume

Planning Objectives

- 1. Increase valley water's resiliency to climate change
- 2. Utility during non-drought emergencies
- Utility during prolonged droughts and/or shorter severe droughts (meets LOS goal)
- 4. District influence over supplies/operations
- 5. Reduces reliance on delta operationally and imported water supply
- 6. Improves groundwater quality
- 7. Minimize lifecycle cost impacts to water rates
- 8. Minimize environmental impacts or increase environmental benefits

Attachment 4 Page 18 of 20 Water Supply Planning Modeling Analysis

- Ran Valley Water's water supply planning operational model for a 94year period
- Model simulates Valley Water operations to meet retailer and nonretailer demands and regulatory requirements
- Model includes supplies, storage, recharge facilities, treatment plants, and conveyance facilities
- Hydrologic conditions and water demands representative of five potential mid-century climate scenarios
- Examined water supply reliability outcomes

MAP 2021 PROGRESS – WATER SUPPLY PLANNING

Water Shortage Contingency Years for Moderate Climate Change Scenario in 2045

- Level of service goal is to not exceed stage 2 (orange)
- Locally renewable water supplies are the most drought and climate change regiment

